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Let X be a metric space. A family H of continuous functions of several variables
of X with values in X is said to be generating if, whenever 4 < C(X, X) separates
points and H operates on A4, then A is dense in C(K, X). (For example, the family
H={x+y, xy, constants} in C(R% R) is generating (for R) by the Stone-
Weierstrass theorem.) We identify metric spaces which admit generating families
(not all do), and among those, we search for spaces X that admit generating
families in C(X% X)—such as R. (This may be considered a topological version of
Hilbert’s 13th problem.) Once we know this, we try to identify some (small)
generating families in C(X?, X). (This is done in particular when X = R.) As a fringe
benefit we obtain a “topological” proof of the Stone—Weierstrass theorem. € 1990
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0. INTRODUCTION

We take the classical Stone—Weierstrass theorem as a starting point for
our discussion. It says that if 4 is a subalgebra of a real C(K) space which
separates the points of X and contains the constants then A4 is dense in
C(K). The following reformulation of this theorem is more suitable for our
purpose.

STONE-WEIERSTRASS THEOREM. Ler A be a subset of a C(K) space which
separates the points of K. If the functions x + y, xy and the constant func-
tions operate on A then A is dense in C(K).

The folowing definition is included in the above theorem.

DerFiniTION. Let X be a topological space, let 4 < C(K, X), and let
he C(X7, X). h operates on A if for {f,},c.r< A4, h({f,}.cr)eA.

Thus, the general scheme of the theorem is the following. For some
metric space X (namely X = R =the real line) there exists a subfamily H of
Uns1 C(X", X) (namely H={x+ y, xy, constants}) with the following
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TOPOLOGICAL VIEWPOINT OF APPROXIMATION
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property: if H operates on some 4 — C(K, X) which separates points, then
A is dense in C(K, X). Moreover, H is actually a subfamily of C(X?, X).

Remark. A constant function in C(X, X) operates on 4 < CiX, X}
and only if that constant is an element of 4. We prefer to consider the
constants as operators on A4 rather than as elements of 4

if

Ir: this work we consider three problems:

I. For which metric spaces X do there exist subfamilies 5 of
Uns: C(X7, X) as above?

2. I, for some metric space X, such families H exist, wher can they
be chosen in C{(X?, X)? (We see later that no such H can be a subset of
ClX, X))

3. Assuming that C(X2 X) itseif is such a family, what cseczc.-
property must a proper subfamily H of C(X? X) have in order to satisfy
the above; and, in particular, which subfarmhes H of C(R* R) do the iob?

The problems are studied in the following sections, but first, we present
some definitions and notation and mention some of the results.

All topological spaces in this work are assumed to be Hausdorff space
K always stands for a compact space. If (X, 4) is a metric space and Y
& Hausdorff space then C(Y, X) is the space of continuous X-value
functions on Y with the topology of uniform convergence on compac
subsets of Y. 4 « C(Y, X) separates points if, for y, % y,in ¥, f(¥,} #f(, 1}
for some fe A. Ho C(X7, X) operates on A if each % e H operates on A,

(I)

f

‘

~ 8

DEeFINITION. (i) A subfamily H of {J,., C(X" X) is said to
generating family if the following holds: for every compact K and &
A< C(K, X) which separates points, if H overates on 4 then 4 is dmee mn

C(K, X).

{ii} A metric space X is in Class 1 if {J,,,, C{X", X) is a gencrating
family.

Lt

-

{iii) A metric space X is in Class 2 if C(X~, X} is a generating family,

o,

Now we can state our problems more precisely:
Problem 1. Identify the metric spaces in Class 1.
Problem 2. Among the members of Ciass 1, find those in Class 2
Problem 3. For X in Class 2, find the generating families H < C(X? X}

5 AL

In Section 1 we show that absolute retracts {(AR) and zero-dimensiona
metric spaces are in Class 1. Note that by this fact the Stone~Welerstras:
theorem follows easily from the Weierstrass theorem. Indeed, since by
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Tietze theorem, R is an AR, it is in Class 1. If Ac C(K)=C(K,R) is a
closed algebra which contains the constants, then each polynomial in
C(R", R)=C(R") operates on A and, by the Weierstrass theorem, C(R")
operates on A. It follows that if 4 separates points, then 4 = C(K). (This
proof applies the Weierstrass theorem in every finite dimension and thus
can hardly be considered “simpler” than the classical proof which uses only
the approximation of |x| by polynomials on compact intervals. Still it
provides us with a different viewpoint and indicates that the Stone-
Weierstrass theorem is built out of two main ingredients: analytic (namely
the Weierstrass theorem) and topological (the fact that R is in Class 1).)

The n-dimensional spheres S, (7> 1) are simple examples of spaces not
in Class 1. (Let 4 = C(S,, S,) consist of the null-homotopic elements. A is
closed, separates points, and C((S,)%, S,) operates on A for every k> 1.) In
Section 1 we also present examples of spaces in Class 1 which are neither
ARs nor zero-dimensional.

In Section 2 we make some observations with respect to Problem 2
which can be regarded as a generalized topological version of Hilbert’s 13th
problem. The only useful information we have on Class 2 is that it contains
all Banach spaces and some zero-dimensional spaces. Problem 3, which is
considered in Section 3, is of an analytic nature. We show, among other
things, that for every non-linear polynomial p(x) in C(R), the family H =
{f(x,3)=p(x)— y, constants} is a generating family (for R), while the
family H,= { —x’+ y, constants} is not a generating family. Thus, —H,=
{x?— y, constants } is generating, while H, is not. We also characterize all
g(x)e C*(R) so that H= {g(x)— y, constants} is generating.

1. PROBLEM 1

To study Class 1, it is convenient to introduce another class, Class 1%,
which, as we see later, is contained in Class 1 and whose members can be
identified more easily.

DEerNITION. A metric space X is in Class 1* if the following holds: For
every compact K and every subset 4 of C(K, X) which separates points, if
for every power T, C(X7, X) operates on A, then 4= C(K, X).

Note that in this definition we assume more (namely that C(X7, X)
operates on A4 for every T and not just for finite 7) and require more (that
A=C(K, X)) than in the definition of Class 1.

DerINITIONS.  Let T be a set of indices, and let {X,,7e T} and X be
metric spaces.
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{i) Let 7" be a subset of T, and let fe C{I],.+X,, X}. fis said
depend only on the variables of T if f{x)= g= P(x), where POl X —
11.c+ X, is the canonical projection and ge C{]1,.+ X,, X).

k_)

(i) For a positive integer #, C ([1,c+ X, X1={/eC{il,.+ X,, X\

o it

f depends on some subset 7' of T with cardinality »}.

(hl} CF(HEETXﬁ X) = U)z?l Cn(nre r Xl’ X = {J{E C{ﬂte!}‘/n A
f depends on some finite 7' < T'}.

LevMva 1. Let T, X,, teT, and X be as above. Then C(V],_+ X,, X} is
dense in C{I1,.r X,, X).

Proof. Let d be the metric function on X, lete >0, let fe C(T1,.+ X,. X'},
and let KcJ],.+X, be compact. We must show that there is some
heCF{H,GTX,,X) so that d(f(w). g{w)) <e for every w in K. Let .i'{e X
Let B,= B(f(k), &/2)={xe X:d(x, f(k))<e&/2}. f *(B,) is an open subset

(I

of {1..- X, whlch contains k. By the definition of the product topolegy
there ensts an open subset V, of [}, .+ X, of the form V=[], . /X
H,K 7, X where Ty is a ﬁmte subset of T'and J,, is an open subset of
X, teTy, sothat ke V, <= f'(B,). By the compacmese of K, there ex:sis

a finite subset K' of K so that JV,\.;E,( covers K. Set 7' ={J{T ke X'}
Then T is finite. For 1€ T\T " let y, be some fixed (but Ctherwi e arbitrary
point in X,. Let g: T[], + X, > X be defined by g(T],c+ x,)=fT1,.+ x>
730 Let ieCp(T],c+X,. X) be defined by ffh)— A
P il,.+ X, »1l.er X, is the canonical projection. We claim th
the job. Indeed, let we K. Thus we V', for some ke X'. Then b@lh
h{w) are in B,. For f(w) this is triviai since ¥V = /4B, ). Let 5w ell,. . X,
be defined by Pw’' = Pw, and for te TM\ 7", P,w =}, {Wh-.e P, ‘_{,_ X, -
X, is the canonical projection). Then w' is also in ¥, (since w' dif
from w only in the coordinates of 77’} while ¥, depends onlv o
coordinates of T,c7'. Also, A(w)= g{Pw)=g(Pw')= flw")
ﬁmt'on of g. Thus A(w)e f Y V,)c B,. It follows that 4( f(w},
Siw) fE) +d(f(k), h(iw)) <e. |

Sl C)..

LemMa 2. Let he C(X7, X) and let A< C(K, X}. If k: operates on A then
it operates on A.

Proof. Let {f,},er=A and &¢>0 be given. Define /1 K— X7 by
(f(k)), = f.(k). Set S=f(K)= XT. For ke K, set B, = B(h(f(k)), ie)= ¥
Then 4~ (B,) is open in X7 and contains s= f{k). Hence there exists a
basic neighbourhood V, of f(k) in X7 so that V, <k '(B,) is of the form

Vi= 1 BUflk), 3,y x X7 7

te Ty
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with T, < T finite. Set U, =T1,c s, B(fi(k), }0,,)x X7 7% Then
flkye U Viech™!(By).

By the compactness of S there exists a finite subset K' of K so that
{Ui}kex covers S.

Set 6 =min{J, ,:ke K’, te T }. § is positive. For each 1€ T, let g,€ 4 so
that for every ke K, d(g,(k), f(k))<31d. Such g/s exist since f,e 4, teT.
Define g: K — X7 by (g(k)), = g,(k). Let we K. Then f(w)e S, so f(w)e U,
for some ke K'. It follows then that g(w) is in V,ch™! (Bk) So, both
a(f(w)) and A(g(w)) are in B, and it follows that d(A(f(w)), A(g(w))) <
for all we K. As h operates on A, h=ge A, and thus, smce & is arb1trary,
hofe A and we are done. |

LEMMA 3. Let D C(X™, X) and A< C(K, X). If D operates on A then
D operates on A.

Proof. Let he D and {f,},.r< 4 be given. Let /: K— X7 be defined by
(f(k),= fi(k). Set S=f(K)=X". Let {h,},>, <D be a sequence which
converges to # uniformly on compact subsets of X7, and in particular on
S. Then by Lemma 2, 4,-fe 4 and h, < f converges to h- f uniformly on
K. Hence h<fis in A and the lemma follows. [

THEOREM 1. Class 1 contains Class 1*.

Proof. Let X be in Class 1*. Let A= C(K, X) separate points, and
assume that for all n, C(X™", X) operates on A. This clearly implies that for
every power T, C-(X7, X) operates on A. (The two statements are actually
equivalent.) It follows from Lemma 3 that the closure of C (X7, X) in
C(X?, X) operates on A. So, by Lemma 1, C(X7, X) operates on A, and
since X is in Class 1* 4= C(K, X), ie, X is in Class 1. ]

The following theorem characterizes the elements of Class 1*.

THEOREM 2. Let X be a metric space. Then X is in Class 1* if and only
if the following holds:

(*) For every power T and for every compact subset S of X7, every
Sfunction f e C(S, X) is continuously extendable over X",

COROLLARIES. (i) Every absolute retract is in Class 1*.
(ii) FEuvery zero-dimensional metric space is in Class 1%,

(iii) If X is in Class 1* and X contains a copy of [0, 1] (or, equir-
alently, if X contains any other absolute retract) then for every normal space
Y and every compact subset S of Y, every fin C(S, X) is extendable over Y.
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In particular if X is a compact element of Class 1* which contains
[0, 1] then X is an absolute retract.

L
«y
<
L]
(&)
~u,

Proof of Corollaries. (i) is trivial and (ii} follows from
p. 333 (vi)]. For (iii), let X be in Class 1*. If S is a compact subse
normal space Y, set 4= {fe C(S, X), fis extendable over Y}. It is easy tc
check (see Proof of Theorem 2) that for every T, C(X7, X} operates on 4.
Also, if X contains [0, 1] then the [0, 1]-valued elements of C(S, X) are in
A and separate the points of S. It follows that 4 =C{S, X). §

H
1 “
ar §
Lol 8 £

{Ku

o o ‘"'*

Proof of Theorem 2. Let X be in Class i*. Let K< X7 be compact. Set
A={feC(K, X):fis extendable over X7}

Then for every te T the restriction ¢,= P,/K, wherp P X7 X, is the
canonical projection, is obviously in 4, apd since {g,},.r separate the
points of K, so does 4. Also, for every set D of indices, C{X 7, X} operates
on A. Indeed, if Lf(,}{,eoc/fl let {F;},.p be their extensions to X’ Then
for every 4 in C(X%, X), hn[F }sep is an extension of /< {f;},.5, so
helfstsepisin A. As X is in Class 1*, 4=C(X7, X}, so X satisfies {*).
Conversely let X satisfy (x). Let 4 < C(K, X) be a subset that scparates
the points of K, and assume that for every 7, C{X7, X) operates or Al
Define : K— X“ by (Y(k)),=f(k), fe A As A separates points, ¢ is
one-to-one and, by compactness of K, { is 2 homeomorphism of X onto
=yiK)= X* Let geC(K, X). Then g:y *e C{S, X}. Since X satisfies
(*}, g= " is extendable to a function ke C(X4, X). As k\X . X} operates
on A, he{f};ea=h-YyeAd But for kek lk)e sc A

g toyi{k)=g(k). Thus ge 4, ie., 4=C(X, X}, and we are dOI\

The following is an example of metric spaces in Class | but not in
Class 1*

ExampLE. Let Xo={(s,sin 1;1):0<7< !} and let X, g X< X, < R be
any set which lies between X, and its closure in R*. We claim that X is in
Class | but not in Class 1*. The fact that X is not in Class 1* follows from
Coroilary (iii), since X contains a copy of {0, 1] in X, and if ¢e X, and
be X X,, then the function f: {0, 1} - X so that f{0)=¢a and f{l}=5is
not extendable over [0, 1].

The fact that X is in Class 1 follows from the next more general lemma.
LeMMA 4. Ler (X, d) be a metric space. Let Xy X be an AR

for every £>0 there exists a continuous mapping r,. X — Xy siuch th
d(x, r.x)<e for every x in X. Then X is in Ciass 1.

Remarks. (i) The condition clearly implies that X, is dense in X.
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(ii) Note that r, need not be a retraction.

(i) In our example X, is homeomorphic to (0, 1] and hence is an
AR. Also, given ¢ >0, r, can be constructed as follows: let n be so large that
3m(4n—3)>1/e, and let r, be the retraction of X onto X, = {(¢ sin 1/7):
2/m(dn—1) <1< 1} obtained by moving a point xe X\ X, parallel to the
x-axis until it meets X,. One checks easily that d(x, r,x) <e for all x in X.

Proof of Lemma 4. Let A= C(K, X) separate points and assume that
for all n=1, C(X", X) operates on 4. We must show that 4 is dense in
C(K, X). Identify C(K, X,) with {feC(K, X), f(K)cX,} and set 4,=
AnC(K, X,y). C(K, X,) is dense in C(K, X) since, for f in C(X, X),
r.o fe C(K, X,) and d(f(k), r,f(k)) < e We complete the proof by showing
that A4, is dense in C(K, X,). 4, separates points since, if /'€ A distinguishes
between two points in K, then so does r, o f for sufficiently small ¢ > 0, and,
as r.e C(X, X) which operates on A4, r,cfedn C(K, Xy)=A4,. We claim
that C(Xg, X,) operates on A,. Indeed, let he C(X}, X;) and let
{fiYi_ =4y Set Y=U]_,fi(K)=X,. Let He C(X", X,) = C(X", X) be
an extension of #/Y". Y"— X,. (H exists since X, is an AR and Y is
compact.}) Then g= H(f,, 3, .., [,) € A since C(X”", X) operates on 4, and
ge A, as g(K)c H(X")c X,. Also, for ke K, (fi(k), ... f,{k))e ¥Y" and on
Y", H agrees with A, so g=Ah(f|, .., /) € Ao. Recall that by Theorem 1 and
Corollary (i), X, is in Class 1. Hence A4, is dense in C(X, X;;) and we are
done. ||

2. PROBLEM 2

Let X be a metric space and let # be a positive integer. In C(X", X)
consider the composition operation which assigns to every (n+ 1)-tuple A,
Ji> S0 fu of elements of C(X", X) another element A(f,...f,) in
C(x", X).

DEerFINITION.  Let H be a subset of C(X”, X). Then comp H denotes the
smallest subset of C(X", X) which contains H and is invariant under the
composition operation. comp H is the closure of comp H. Clearly
comp H=1),.,H;, where H,=H, and H, , , consists of compositions of
elements of H,. Hilbert’s 13th problem contains the conjecture that
comp C,(R?, R) # C(R?, R). (See Definition (ii).) This has been refuted by
Arnold [A] and Kolmogorov [Kol]. Kolmogorov’s result is surprisingly
strong. It shows in particular that for each » > 2,

comp(C(R", R)u {x+ y})=C(R", R)
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(where x + y is the additien function in C,{R", R).) See {St1] for a survey
of related results.

DermNitioN.  Class 3 consists  of the metric spaces X such that
comp C,(X" X)=C(X", X) for every n=3.

From Kolmogorov’s theorem it follows that R is in Class 3. However, as
the polynomials in C(R") are in comp C,(R", R), the Weierstrass thecrem
=mp11es thlS as well. Malcev [M ] proved that for ‘We“} pan (n, k)« f non-

‘”eal.lf {I1s Lhe mterval fo, 1] and S; the Lspheres There exists some r
in C\X2 X) so that comp(C (X", X)u {h}})=CX™, X), m=2.
I"x (S;)* are in Class 3 for all #» and k. From the results of [St-W an
[St27 it follows that every Banach space is in C“‘ss 3.

Gadzhiev proved in [G1] that comp C,({S5)°, S;)= C{{(S,)’. S;}, whers

§; 1s the 3-sphere; however, in [G2] he showe\, that comp C;{{S5)% S;}
differs from C({S5)% S;), and it seems that his argument shows that §
not in Class 3.

Our interest in Class 3 results from the foliowing theorem.

TueoreMm 3. Class 2 consists of the intersection of Classes | and 3.

Proof. Let X be in Class 2. Then X is in Class { and C(X2 X} is
generating family. Set 4 =comp C.{X", X). Then 4 < C{X", X) s\.pa;ates
the points of X” and obviously C(X?, X) operates on 4. As C{X% X} is
generating, 4 must be dense, and thus X is in Class 3. Note that by de

tion the operation of a generating family implies density when 4 < C(X, X}
with X compact. We applied this here for 4 = C{X", X}, where X" may fail
to be compact. But this is still valid since the topolegy in C(X", X } is that
of uniform convergence on compacts. Conversely, assume that X is in both
Classes 1 and 3. Let 4 = C(K, X) separate points, and iet C{X 7, X) operate
on A. Then, for each n, comp C,(X", X) ) operates on A. Bv Lemma

-
3 3
.“ T

comp C,(X™", X) operates on A. Thus 4 is dense in C(K, X) and X
Class 2. §

It seems as though Class 3 contains Class 1. By Theorem 3 this wouid
imply that Classes 1 and 2 agree. We leave this as an open question.

Question 1. Does Class 3 contain Class 1?
Question 2. Does Class 3 contain Class 1*7?

Question 3. Does Class 3 contain all AR’s and all zero-dimensional
spaces?

For zero-dimensional spaces we have the following partial result.
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THEOREM 4. Let X be a finite dimensional compact metric space. If X*
is homeomorphic to a subset of X, then for all n=2, comp C,(X", X)=
C(X", X), and in particular X is in Class 3, and hence in Class 2.

Proof. Let h be a homeomorphism of X? into X. Define 4,: X" > X
by hy=h, h,, (X1, X2, 00 X)) =bh,(x1, ., X)), X,.1). h, is then in
comp C,(X", X) and is a homeomorphism. Note that if dim X' > 1, then
dim X2>dim X+ 1. (See [E, p.98, 1.9.E(b)]). Hence dim X =0. Thus,
by [Kur, p.333, (vi)], A ': h(X")— X" is extendable to a mapping
H,:X— X" Let fe C(X", X). Define 1€ C(X, X) by t(x)=f(H,(x)). Then
for we X"

t(h,(w))=foH,=h(w)=f(w).
As te C (X" X) it follows that fecomp C,(X”", X). 1

3. PROBLEM 3

In this section we consider generating families H = C(X?, X), where X is
in Class 2. Since, aside from some zero-dimensional spaces, the only
members of Class 2 we know of are Banach spaces, we concentrate on
those, and in particular on the most interesting case, X' = R. Still in the
general frame we have the following characterization of generating families.

THEOREM 5. Let X be in Class 2. A subset H of C(X? X) is generating
if and only if omp{H U {x} U {y}} = C(X?, X), where x is the projection
h(x, y)=x and y is the projection g(x, y)= y.

Proof. Let H operate on a subset 4 of C(K, X) which separate points.
Then clearly comp{H U {x} U {y}} also operates on 4, and by Lemma 3,
comp{Hu {x}u {y}} operates on A. Thus, if comp{H U {x}u {y}}=
C(X?, X), then A4 is dense in C(K, X) since X is in Class 2. Conversely, A =
comp{Hu {x}u {y}} = C(X? X) separates points, and H operates on A.
Thus, if H is generating, then 4 must be dense, and we are done. |J

DermNiTIONS.  Let H < C(X2, X).

1. E(H)=comp{Hu {x}u{y}}.
2. Let7: X — Y be a homeomorphism of X onto Y. For #e C(X?, X),
let A* =tht~'e C(Y? Y) be defined by

Py, y2)=tht =y, ya)=tlh(c " yy, T 1)
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and for Hc C(X2 X),

H*=tHt '={tht “:he H} < C(Y" Y

ProposiTiON 1. Let X be in Class 2 and let : X =Y be a homee-
morphism. Then H < C{X?, X) is generating if and only if H* < C(Y>, ¥} is
generating.

Proof. One checks easily that A%c(f* g*¥)=(h-{f g)}}¥*. Hsence

s &

(E(H))* = E(H*). Thus, H is generating iff E(H) is dense in C(X?, X}, iff
(E(H)y* is dense in C({Y? Y), and iff H* is generating, §

From now on we restrict the discussion to real Banach spaces. Let X be
a Banach space. Let x+ 3, x— y, 1x denote the functions f{x. vi=x+ 3,
g(x,y)=x—y, and h(x)=tx (teR), respectively. Let C'{X", X) denote
the continuously differentiable elements of C(X", X}. Let also

SW(X)={heC(X, X): {x— 1y, ix, i€ R, constants, 71}
is a generating family }

and

D(X)={he C(X, X): {x— y. constants, 4} is generating }.

Note that D{X) < S.W.(X) and that the Stone-Weierstrasse theorem says
that A(x)=x"is in S.W.(R).

The families S.W.(X) and D(X) were studied in [St—=W7 and [SiZ2],
respectively. In particular it is proved in [St-W ] that for every Banach
space X, S.W.(X) is dense in X; that S.W.(R) consists of the non-affine
functions of C(R); and the elements of S.W.{R") are identified explicitly.
Similar results are obtained in [St2] for D(X)}n CH(X, X).

In particular it follows from those results that fe D{R)n CY{R) if znd
only 1if f is non-affine, and no proper closed subgroup G of R is &
generalized period of f. (G is a generalized period of f if for x, ye R,
x— ye G implies that f(x)— f(3)eG. f G=aZ, a>0, this is equivalent to
the identity f(x+a)=f(x)+ fla)— f(0) for ail xe R Seec [St2].} Thus
every non-linear polynomial and every exponential 7, p a polynomizl,
are in D(R).

THEOREM 6. Letr X be a Banach space. Let [ e C{X, X}, and let h{:
f{x)— ye (X7, X). Then H= {h(x, y), constants} is generating if and
if fe D{X).

S
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Proof. Clearly,

comp{ f(x)— y, constants, x, y }

< comp{x — y, f(x), constants, x, y }.

If H is generating then, by Theorem 5, comp{ f(x)— y, constants, x, y} is
dense in C(X? X), and thus comp{x— y, f(x), constants, x,y} is also
dense there. By Theorem 5 again, fe D(X). Let fe D(X). We must show
that E=comp{ f(x)— y, constants, x, y} is dense in C(X?% X). We use the
terminology and notation of [St2].

(1) If fe D(X) then the closed additive subgroup G of X generated by the
range of f is the whole of X.

Proof. G is a generalized period of f, indeed, for x,y in X,

f(x)—f(»)e@, and in particular for x, y in G. Thus, if G={0} then fis
constant, and since it is not a constant, G must be X.

(2) Let ny,n,,...n, be integers. If Y_ n; is even then for every
iy tys e b in X, Y% 0, f(1))+ yeE, and le;:1 n; is odd then for every
Lisonty in X, X5 n,f(t;)— y€E.

Proof. By induction on 3%_, |n;]=m. f m=1, then n, =k =1 and, as
f(x)— yeE, we apply the substitution x=1¢ (recall that E contains the
constants) and obtain f(f)— ve E. Assume (2) for 3*_, |n;| <m, and let

%_,In; =m. Let m be even (the other case is similar). Then m — 1 is odd.
By subtracting 1 from one of the u,’s, n,, say, we obtain that
—((n, = 1) ft)+X*_,n.f(t,))— ye E. As f(x)— y € E we may substitute
the above for y in f(x)— y and conclude that f(x)—(—((n,—1)f(s,)+
Sk ,n.f(t))— y)eE. Set x=t, and obtain Y *_, n,f(t)+yeE.

(3) ForeveryainG,a+ yveE, and by (1), t—yekE for all te X, and in
particular, — ye E.

Proof. {¥*_,n,f(1,), n;eZ, t;€ X} is dense in G.

Set B={ve C(X, X): v(x)— ye E}.

(4) Bc E since ve B implies v(x)— ye E and set y=0.

(5) B contains the constants (by (3)) and in particular 0 € B.

(6) B is a group.
Proof. Let u,veB. Then wv(x)—y, u(x)—y are in E. Hence (set
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yi=olx)— ), u(x)— (o(x)— p)=u(x)—v(x)+ ye £ As —yek, uix)—
v{xy—vekL, ie., u(x)—t{x)eB.

{7} f operates on B.

i

Proof. Let veB. Then veE. Hence the composition A-{r, yi=
for{x)—veE sofeveb

(8) feB (since f(x}—yekE).

() LerveB and ae X, then v(—x) and v{x +a) are in B.

Proof. g(x,y)=1uv(x)— yekE, and by (3), —x and y are in E. Hence
gl—x.y)=t(—x)— yeE so v(—x)eB. By (3), a+ yeE so by substitu-
tion, y:=x, a+xekE In g(x, y)=u(x)— v replace x by x + 2 and obtain
t{x+a)—vekE Sov(x+a)eB.

Set L=,cpt '(0)={aeX:r{a)=1(0) for alive Bj.

{10y L is a closed subgroup of X.

Prosf. Clearly 0e L and, by (9), ae L implies that —ae /. Let o, 5.
We show that ¢(0)=uv(a+b), ie., a+bel. Let teB By (9} u{xi=
v{x+bYe B. Hence, as be L, u(0)=v(h)=10v(0), and since gae L, a(()=
#{aj=r{a+5b). So t(0)=r(a+b).

{11y LetveB,ael,andeecX. Then t(e+ai=rt(e}+ v{a}— {0}

Proof. Set u(x)=v{x+e)—r(x). ue B by {6) and (9). Thus, as g/,
uld=ufa), e, v(e)—v(0)=v(a+e)—ria)

(123 Let geE be a function of x only so that g(0)=0. Then g{L}c L

Progf. Let we L. Set z= g(w). We must show that ze L, :
for ali veB. Let reB. Then u(x)=r(g{x))eB. So u(
v{g{n)y=¢(g(0)), and as g(0) =0, v(z)=1v{0)

(13) L is a generalized period for every element of B.

Proof. We must show that for x, ye X, x— ye L implies that g‘ -
giyye L for ge B. Note first that we may assume g{0)=0, since if gsS
then g(x)=g{x)—g(0)e B and Z(x)— g{y)=g(x)—g{y) Sc, let x—y=
we L and ge B with g(0)=0 be given. By (11},

glx)=g(y+w)=gly)+ glw)— g(0) = g{y) + glw).

Hence g{x}— g(»¥=gw)e g(L)c= L by {12}
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(14) B separates the points of X.

Proof. fe B and L is a generalized period of f. As fe D(X), L must be
trivial, i.e, L= {0}. Let a, b€ X and assume that v(a)=1v(b) for all ve B.
As v(x —a)e B whenever ve B, v(0)=v(b—a) for all ve B. Hence b—ae L.
Sob—a=0,ie., a=b.

Proof of the Theorem (Concluded). B is a closed subgroup of C(X, X)
which separates points and contains the constants, and f operates on B.
As fe D(X), B=C(X, X). Hence the identity function x is in B, and the
function x— y is in E. Hence {x— y, f, constants} operates on E and as
feD(X), E=C(X? X). 1

It follows from Theorem 6 that for every non-linear polynomial p(x),
H,={p(x)—y, constants} is generating in C(R?). It turns out that
p(x)+ y is very different.

PrROPOSITION 2. Let p(x) be a polynomial whose leading coefficient is an
integer. Then {x+ y, p(x), constants} is not generating.

COROLLARY. {p(x)+ y, constants} is not generating either.

Proof. Let p be of degree k=2 and let ¢ be the sign of the leading coef-
ficient of p (which is assumed to be an integer). We distinguish among the
following three cases.

(1ye=1, (2) e= —1and k is even, (3)e=—1adkis odd.

In case (1), let A = C(R) consist of the constants and all the polynomials
of positive degree with leading coefficient in the set N of positive integers.
From the classical theory of Chebyshev (see, e.g., [L, p. 32]) it follows that
A is a closed subset of C(R). (The restriction of 4 to every interval J< R
of length >4 is closed in C(J).) It is clear that 4 separates points and that
H={x+y, p(x), constants} operates on A.

As A+# C(R), H is not generating. (Note that the same proof shows that
Avu {x+ y} is not generating.) In case (2), note that H= {p(x), x+ ,
constants} is generating if and only if H* = {— p(—x), x + », constants }
is generating. (Apply Proposition I with 7(x)=—x, X¥=Y=R). As
case (1) applies to — p(—x), H is not generating.

In case (3) we need a slightly more complicated test set 4. Let 4=
U;» _ A4,, where 4 _, = the constants.

A,;= {polynomials of degree k’ with leading coefficients in (—1)' N}. As
in case (1), 4 is closed in C(R) and H = { p(x), x + y, constants } operates
on A. |
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ExAMPLE. H= {x’—, constants} is generating, by Thecrem 6, while

TKur]

{—x*+ y, constants} is not generating, by Proposition 2.
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